UCRL-JC-131222
PREPRINT

Extrapolation of Damage Test to Predict
Performance of Large-Area NIF
Optics at 355 nm

M. D. Feit
M. Rubenchik
R. Kozlowski
F.Y. Génin

S. Schwartz
L. M. Sheehan

A.
M.

This paper was prepared for submittal to the

30th Boulder Damage Symposium: Annual Symposium on
Optical Materials for High Power Lasers
Boulder, Colorado
September 28 - October 1, 1998

December 22, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprintis made available with "
the understanding that it will not be cited or reproduced without the permission of the
author.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.
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ABSTRACT

For the aggressive fluence requirements of the NIF laser, some level of laser-induced damage to the large (40x40 cm)
351 nm final optics is inevitable. Planning and utilization of NIF therefore requires reliable prediction of the functional
degradation of the final optics.

Laser damage tests are typically carried out with Gaussian beams on relatively small test areas. The tests yield a
damage probability vs. energy fluence relation. These damage probabilities are shown to depend on both the beam fluence
distribution and the size of arca tested. Thus, some analysis is necessary in order to use these test results to determine expected
damage levels for large aperture optics.

We present a statistical approach which interprets the damage probability in terms of an underlying intrinsic surface
density of damaging defects. This allows extrapolation of test results to different sized areas and different beam shapes (NIF
has a flattop beam). The defect density is found to vary as a power of the fluence (Weibull distribution).

Keywords: laser initiated damage, statistics, large optics

2. INTRODUCTION

Laser damage testing at LLNL serves at least two purposes. First, testing is used as an indicator of damage resistance
of optical elements prepared by different processes and for assurance that processing parameters have not changed. Secondly,
and more challenging, we want to use the results of laboratory laser damage testing to predict the operational performance of
such optics with respect to laser induced damage. This later function is especially important since the “first bundle” (8
beams) of NIF will not come on line for about 18 months, and Livermore no longer has the Beamlet laser available for large
aperture testing. In the meantime, only relatively small aperture damage testing will be available. Typical damage testing is
done with small Gaussian beams (1/¢* diameter ~ 1 mm) and relatively small test areas (few cm?). For the large areas in NIF
(192 beams with final optics 40x40 cm), the issue is not whether or not there will be damage. Damage is certain. The
relevant question is the concentration of damage and the extent to which it impacts the functional role of a particular optic.
The present paper presents a conceptual viewpoint from which to address both scaling from laboratory scale to large scale
optics and part of the basis for the prediction of optical lifetimes. Several other papers in these proceedings describe LLNL’s
related efforts to optimize laser damage testing and interpretation of test results. These papers include detailed descriptions of
testing of fused silica (Schwartz, et al), KDP (Runkel, et al), damage growth in coatings (Maricle, et al) and silica (Salleo, et
al) and full aperture system tests (Kozlowski, et al).

Laser induced surface damage initiates at extrinsic defects which affect the near-surface transparency. Qualitatively,
this statement is supported by the probabilistic nature of observed damage thresholds and the increased variance of observed
thresholds with decrease of the illuminated area. The specific nature of responsible defects doubtless depends on the type of
material (glass, fused silica, KDP), polishing procedure, radiation wavelength, etc. In order to estimate operational damage
probabilities for large optics from experimental results with smaller optics, it is useful to apply a well founded
phenomenological approach involving a few empirical parameters to do the extrapolation. This is the first step in developing
a general laser damage reliability model for large optics.

Our problem is a special case of the general need to predict the reliability of a system subject to failure at its weakest
points, a problem which has been of great importance to industry'. Specific examples of relevance concern the mechanical
strength of optical fibers? and the electrical breakdown of insulation on coaxial electrical cables®. In both of these cases, one
wishes to estimate the behavior of very long cables from tests conducted on much shorter lengths. A similar approach was
used in a 1970’s Arzamas study* of area dependence of laser glass damage thresholds. An initial statistical description of laser
damage initiation was given in ref.[5].



Conceptually, we start by considering how to describe damage incidence on a very large illuminated area. Because of
the various material parameters and types of defects influencing damage initiation, a distribution of damage thresholds can be
expected in contrast to a single definite threshold. For such a large area, some damage spots will occur even at low energy
fluences and a single threshold is not very descriptive. The more recent practice of determining a damage probability curve
corresponding to sampling an area with a number of small aperture tests is much more useful. However, as we will see
below, the precise shape of such curves is highly dependent on the shape and area of the laser beam used in the test. A means
of extrapolating to large areas with other beamshapes is given below.

We start with an overview of the problem of “extreme statistics”, i.e. situations in which the overall strength is
determined by the weakest point (some surface defect in our case). We propose® using the surface defect density underlying
observed damage as a figure of merit and characteristic quantity. We observe experimentally that the cumulative damaging
defect density typically varies rapidly with fluence, often as a power law or Weibull distribution. The Weibull plot analysis is
of general use in engineering and is discussed in ref.[1]. A summary of scaling laws determined from computational
simulations of fracture and breakdown for this type of phenomena is given in refs.[6-7]. The reader is also referred to
descriptions of damage threshold area scaling® and the probabilistic analysis’ of damage in KDP. We carry through below a
generic calculation of damage incidence using intensity statistics from LLNL’s NIF prototype Beamlet laser. We extrapolate
typical small sample damage test data to NIF sized optics and compare the result to observed experience on Beamlet. This
extrapolation gives encouraging results. Finally, we make several suggestions for gaining the necessary data and confidence to
make reliable large area predictions of damage incidence.

3. FAILURE PROBABILITY APPROACH AND DAMAGE TESTS

We will characterize the distribution of damage inducing defects by the fluence at which they cause damage. We
define P(S,F) to be the probability that a surface area S exposed to radiation of increasing fluence will damage at fluence F.
The complementary probability U(S,F)=1-P(S,F) is then the probability to survive fluence F. Let the number of surface
defects per unit area that produce damage at fluence between F and F+dF be defined as n(F)dF. Then, the incremental
probability that the surface damages at F+dF given that it did not damage at F is the product of the probability of survival up
to fluence F, U(S,F), times the probability of finding defects that damage in this interval, nSdF. That is,

P(S,F+dF)-P(S,F)= -( U(S,F+dF)-U(S,F) )= Sn(F)U(S,F)dF e
or in differential form
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The probability to survive at fluence F is seen to be given by

U( S, F)=expl- S f n(F)dF)] =exp| - S c(F)]
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Here c(F) = JF n(F’) dF’ is the cumulative areal density of defects that cause damage at fluence less than F.

Several features are immediately clear. First, from Eq.(3), one sees that the area being tested appears in the exponent.
The consistency of the area scaling in Eq.(3) was tested in ref.[5] by examining samples of 100, 500 and 900 test sites. It was
shown that while the average damage fluence was accurately determined by the 100 site sample, the low fluence distribution
varied systematically with sample size. It is this lowest fluence data that is most important for extrapolation to large areas.

From Eq.(3), if the survival probability is 50% at a given fluence and laser spot size, increasing the beam area by a
factor of 10 reduces the survival to (1/2)!° = 0.1% at that fluence. One can immediately extrapolate the results for one area to
another using the same rule. However, while correct, this gives an over pessimistic impression. That is, the 50% damage
fluence may not decrease proportionately - the S-curve changes. In practice, the observed data have uncertainties including
statistical sampling uncertainties and these uncertainties increase proportionately with the increased arca making the
experimental results less useful at the larger area. Related to this is the fact that low probability low damage fluence events at
small area become most important for large areas, and these events, of necessity, have large statistical uncertainties. The
damage vulnerability of the material is thus best described not by the damage probability derived from a particular test, but
rather by the damage concentration ¢(F) which is characteristic of the particular surface. In summary, we relate the measured
damage probability P (the S curve) to the concentration ¢ through

P(F) = 1 -exp[-c(F) S] @



To proceed further analytically, we must specify the damage distribution function ¢(F). In many practical
applications, a power law dependence of ¢ on the “stress” factor (here fluence F) has proved useful in analyzing experimental
data. This so-called Weibull distribution function) refs.[1-2,4-5] is of widespread use. A variation of this model was used in
{4] to analyze area dependence of damage thresholds. We will use this Weibull distribution in the following since it generally
fits LLNL data.

If one can reasonably fit an empirical model, such as the Weibull distribution, to the data and gain some confidence
that it can be extrapolated to smaller fluences, then the model can be used to reliably estimate damage statistics for large areas.
For example, suppose that one finds the cumulative defect distribution ¢(F) defined above to scale as the m™ power of fluence
(m=~2-22 in LLNL data). Then the 50% fluence for an area 10 times larger than that of the original experiment will be reduced
by a factor of 10"™ which is a reduction of only about 20% for m=10. The fact that both statements (survival at original
fluence is near zero, 50% fluence drops by 20%) can be true is a reflection of the fact that the S-curve of damage probability
becomes sharper for larger areas.

We carry out two types of damage tests. The Automatic Damage Tester (ADT) (see Sheehan, et al, this proceedings)
increases the fluence until a site damages (R/1 test). Typically, a beam with diameter on the order of 1mm is used and the
individual N sites are well separated. A cumulative damage probability curve (S-curve) is found from the ratio of the number
of sites that damage below fluence F to the total number of sites N. Our Large Area Tester (LAT) (sce Schwartz, et al, this
proceedings) raster scans an area at constant fluence leading to an area density of damage sites. A beam with diameter on the
order of 1 mm is used for the raster scan. Since the beam is stepped a fraction of a beam diameter in making the scan, there is
beam overlap. As noted above, the irradiance distributions in these two test scenarios are important in understanding the test
results. With the LAT, we scan relatively large areas (e.g. 20 cm?). This necessitates lower test fluences than for ADT and
only a few values of fluence.

ADT Damage test results usually are presented in terms of the cumulative damage S-curve. The actual observations
from which the S-curve is derived typically show considerable statistical scatter. We show in Fig.(1) the 1 mm? damage
probability distributions derived from several samples of fused silica. Because of the small beam size, appreciable damage
probability occurs at much higher fluences than those appropriate for a large optic. It is, of course, precisely the low fluence
low probability values that are needed for extrapolation to large areas. Fig.(2) shows a Weibull plot (In(-In(1-P)) vs. In F) for
this data. Overall, this data fits the Weibull form quite well with a power (Weibull exponent) of 10-14. Once the Weibull fit
is made, one can calculate the effective area (see Sec. III) and derive the damage concentration. Further discussion of Wetibull
analysis of ADT test results is given in ref.[5].

LAT test results are usually presented in terms of number of damage sites within some scanned area. It is very
natural to report these as a damage concentration (once the arca correction for irradiance distribution is made). The principle
difficulty in analyzing these results comes about from the complicated irradiance pattern used in scanning. Since damage
incidence depends on the peak fluence seen at a point, it is necessary to calculate the effective area of a flat beam with the
same maximum fluence. (see below). This can be done once the Weibull exponent is determined. Typical LAT raw and
area corrected data are shown in Figs.(3-4).

4. IMPORTANCE OF DAMAGE TEST BEAMSHAPE AND SIZE

Tn the formulation above, S refers to the “illuminated area”, but one has to be careful about what this means for a
nonuniform beam. In particular, we have observed that damage probability for high quality samples typically depends on a
high power of the fluence, e.g. m=12. If the illuminating beam is Gaussian shaped, for example, the effective source for
initiating damage depends on the mth power of this Gaussian which is much more strongly peaked than the Gaussian. Thus,
an effectively smaller area is Hlluminated at the peak fluence. In general, one should replace S ¢(F) in Eq.(3) by the integral
Jedx dy =c(F,)S,; , where F,is the peak fluence and S,;; is an effective illuminated area.. Thus for a Gaussian beam with F
=F, exp(-(1/6)?), one finds the appropriate area to use is Sy;= 6°/m in order to find the “intrinsic” damaging defect density
needed to estimate results for a flat beam. Thus, an effective area, determined jointly by the beamshape and the defect density
must be calculated to normalize the defect density found from experimental observations.

In a typical small beam area damage test, measurable damage is generally found only at fluences greater than
operational fluences for large area optics. The Weibull distribution (once ascertained correct) can be used to scale the results to
lower fluences.



As an example, consider recent ADT tests (7.5 ns pulse) on a Zirconia polished sample. The beam 1/e* radius was 1
mm so the effective area is about 0.1 mm?. The experimentally determined cumulative densities at 36 J/cm? were found to be
¢,(36 J/em™?) =411 cm® with m=17 and ¢,(36 J/cm?)=376 cm™ with m=14 where the subscripts refer to side 1 and side 2. The
NIF redline fluence for 7.5 ns pulses is 20.6 J/cm? . At this fluence, the damaging defect density is expected to be given by
¢(36) (20.6/36)™ which gives ¢, = 0.03 cm™” and ¢, = 0.15 cm™. For a NIF size optic of 1600 cm® area, we thus expect about
48 damage sites on side 1 and 240 sites on side 2 at the redline fluence. The difference is due to the different values of m (see
Fig.(9) ). The low values reflect the high damage resistance quality of the sample. The extrapolated differences for the large
area emphasize the utility of using the exponent m as a figure of merit, all else being equal. In general, one can characterize
the curve by its slope and value on a log-log plot. At the lower operational fluences, very few damage sites would be expected
on a large optic made of this material.

For the LAT raster scan, one has to evaluate [ ¢ dx dy =c(F, )S, using c(F)= ¢, F"(x,y) where F(x,y) is the
distribution of peak fluence over the scanned area. Evaluating this integral for a Gaussian scanning beam and choosing the
scan step so beams overlap at a fraction f of the peak intensity, we find that Sy / S, = (/4) [erf(arg)/arg]’ where
arg=V(m In(1/f))

The analysis presented here allows comparison between different types of tests, eg. the ADT tests shown above and
large area raster scans (LAT) in which case tens of cm? are scanned at constant fluence and resulting damage sites counted.
Fig.(5) compares the derived damage density for ADT and LLAT tests for silica with various polishing processes. It is seen that
the cumulative damaging defect densities found cover a range spanning six orders of magnitude and results of the two types of
test are consistent.

5. EXTRAPOLATION TO LARGE AREA OPTIC

Above, we considered the probability of finding a single damage site within an area S. For a very large area, the
practical issue is the damage density or area per damage site given some fluence distribution. Thus, the goal of small sample
damage tests is to predict the damage density on a very large sample. The observed results presented above suggest the
following approach.

Typical tests yield damage density for an effective flattop beam once the effective area correction is made from the
beamshape and the slope of the Weibull curve. For a sufficiently large population of sites, especially at the lower fluences,
one can use the power law fit to extrapolate to the lowest fluences of operational interest. However, large area high power
beams never have uniform fluence, but rather some distribution (Fig.(6)). As with the small beam tests, one again has to
account for the fluence distribution. For example, for a beam with normal, i.e. Gaussian beam statistics, one can make a
simple analytic estimate of the effect of the fluence distribution. The expectation value of the exponent in Eq.(3) can be found
by expanding the integrand around the mean fluence value. If the average fluence is F, and the 1/e width of the fluence
distribution is 6, then one finds
P(F,) =1 - exp(-S <c(F,)>), where

4b° ’
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Here, P(F,) is the expected damage probability as a function of the mean fluence, P, = 1 -exp(-S c(F,)) is the damage
probability obtained for a perfect flattop beam at fluence F,,, b =F,/c, and m is the slope of the Weibull curve. This is a good
approximation provided that

b =Fy/0>>m" ©)
i.e. for a sufficiently small variance (e.g. for m=12, 6/F, should be less than 0.4). Here c(F) is the cumulative damage
density as before and <c> refers to the expectation value. This condition is satisfied for the distribution given in Fig.(6).
Eq.(5) gives insight into the effect of fluence deviations. Eq.(5) is approximate; in the case where m does not satisfy Eq.(6), it
is possible to simply find P(F,) by numerical integration using the exact expression

<c( Fy)>= f c( F) f(F) dF
b N

where f(F) is the flucnce distribution of the large beam and the cumulative defect density ¢(F) is obtained from the Weibull fit
of the small beam test data.

&)



Note that the factor multiplying c¢(F,) on the rhs of Eq.(4) gives the increase in expected damage density due to the
fact that the illuminating fluence is not fixed, but has a distribution. This “damage enhancement factor” (DEF) can be used as
a figure of merit in comparing the damage effects of beams with structure or random fluctuations. In the case calculated
below, the DEF=1.14, i.e. the damage density is expected to be 14% higher than for a flat beam at the average fluence.

We present here “generic” type calculations to show the orders of magnitude involved. Fig. (6) shows a typical
experimental fluence distribution at a large lens on the LLNL Beamlet laser. The mean 3 fluence is 5.3 J/cm? and the full
1/e width is about 30% . Fig.(7) shows the result of extrapolating the area corrected small area LAT results for a typical high
quality lens. The test results have been adjusted for the Beamlet fluence distribution and vt scaling of fluence assumed. On the
same plot, we show the observed damage density after the 38 shot frequency tripling campaign on Beamlet. The expected and
observed densities agree quite well. The curve of expected damage assumed that beam statistics are the same shot to shot. It is
known that this is not so. If intensity fluctuations (hot spots) move around completely randomly from shot to shot, the
expected damage density would increase another factor of about 2. The tripler campaign was chosen as an example since its
relatively low beam fluences offer the best opportunity to establish the usefulness of the analysis proposed here. On higher
fluence series, complications due to system effects (interactions of different optics via beam modulations and/or
contamination) can complicate the interpretation of damage incidence.

6. CONCLUSIONS

Reliable probabilistic estimates of damage for large optics can be based on damage studies of smaller samples.
Conceptually, it is important to focus attention not on the probability of damage which depends on the size of the area tested,
but, rather, on the areal density of sites that damage at a given fluence. This density is characteristic of a homogenous
material and can be extrapolated, assuming homogeneity, to find the damage density on an infinite area sample. The practical
requirement for such extrapolation is adequate knowledge of the low fluence damaging defect density ¢(F). The following
recommendations and questions are suggested from the above.

Previous treatments of laser damage tried to establish a threshold for a particular sample. The statistical nature of
damage has been recognized by introducing the threshold distribution (S-curve) for a given sample. In practical terms, the
relevant question is what is the probability for a given tolerable damage density. Reliable estimates of this probability will
depend on accurate knowledge of the damaging defect densities described above. The tolerable level of damage is likely to be
different for different materials and operating environment. For example, 1 spatial filter lenses with one side in vacuum and
the other side in air are subject to large mechanical loading. Since the more vulnerable 3w optics are in vacuum and at the end
of the chain, the level of tolerable damage can be quite different.

Reliable probabilistic estimates of damage levels will require not only extrapolating small area damage observations
to larger areas, but also knowledge of how initial pinpoint damage grows with subsequent shots. This knowledge can then be
combined with a detailed model of temporal and spatial fluctuations expected in the NIF pulse to produce realistic estimates of
damage related beam obscuration. Of course, one can never be absolutely sure there are no “extremely rare” damaging defects

without full aperture scanning.

*Work performed at LLNL under the auspices of the U.S. Department of Energy under contract No. W-7405-ENG-48.
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Fig.5: Damage densities derived for fused silica
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